*** Welcome to piglix ***

Liquid scintillation counting


Liquid scintillation counting is the measurement of activity of a sample of radioactive material which uses the technique of mixing the active material with a liquid scintillator, and counting the resultant photon emissions. The purpose is to allow more efficient counting due to the intimate contact of the activity with the scintillator. It is generally used for alpha and beta particle detection.

Samples are dissolved or suspended in a "cocktail" containing a solvent (historically aromatic organics such as benzene or toluene, but more recently less hazardous solvents are used), typically some form of a surfactant, and small amounts of other additives known as "fluors" or scintillators. Scintillators can be divided into primary and secondary phosphors, differing in their luminescence properties.

Beta particles emitted from the isotopic sample transfer energy to the solvent molecules: the π cloud of the aromatic ring absorbs the energy of the emitted particle. The energized solvent molecules typically transfer the captured energy back and forth with other solvent molecules until the energy is finally transferred to a primary scintillator. The primary phosphor will emit photons following absorption of the transferred energy. Because that light emission may be at a wavelength that does not allow efficient detection, many cocktails contain secondary phosphors that absorb the fluorescence energy of the primary phosphor and re-emit at a longer wavelength.

The radioactive samples and cocktail are placed in small transparent or translucent (often glass or plastic) vials that are loaded into an instrument known as a liquid scintillation counter. Newer machines may use 96-well plates with individual filters in each well. Many counters have two photo multiplier tubes connected in a coincidence circuit. The coincidence circuit assures that genuine light pulses, which reach both photo multiplier tubes, are counted, while spurious pulses (due to line noise, for example), which would only affect one of the tubes, are ignored.


...
Wikipedia

...