In mathematics, a Nichols algebra is a Hopf algebra in a braided category assigned to an object V in this category (e.g. a braided vector space). The Nichols algebra is a quotient of the tensor algebra of V enjoying a certain universal property and is typically infinite-dimensional. Nichols algebras appear naturally in any pointed Hopf algebra and enabled their classification in important cases. The most well known examples for Nichols algebras are the Borel parts of the infinite-dimensional quantum groups when q is no root of unity, and the first examples of finite-dimensional Nichols algebras are the Borel parts of the Frobenius–Lusztig kernel (small quantum group) when q is a root of unity.