The London equations, developed by brothers Fritz and Heinz London in 1935, relate current to electromagnetic fields in and around a superconductor. Arguably the simplest meaningful description of superconducting phenomena, they form the genesis of almost any modern introductory text on the subject. A major triumph of the equations is their ability to explain the Meissner effect, wherein a material exponentially expels all internal magnetic fields as it crosses the superconducting threshold.
There are two London equations when expressed in terms of measurable fields:
Here is the superconducting current density, E and B are respectively the electric and magnetic fields within the superconductor, is the charge of an electron & proton, is electron mass, and is a phenomenological constant loosely associated with a number density of superconducting carriers. Throughout this article SI units are employed.