| Names | |
|---|---|
|
IUPAC name
(4S,7S)-11-((R)-3,7-dimethylocta-1,6-dien-3-yl)-4-(hydroxymethyl)-7-isopropyl-8-methyl-4,5,7,8-tetrahydro-1H-[1,4]diazonino[7,6,5-cd]indol-6(3H)-one
|
|
| Other names
Lyngbyatoxin-a
|
|
| Identifiers | |
|
3D model (JSmol)
|
|
| ChemSpider | |
|
PubChem CID
|
|
|
|
|
|
| Properties | |
| C27H39N3O2 | |
| Molar mass | 437.63 g·mol−1 |
|
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
|
|
|
| Infobox references | |
Lyngbyatoxin-a is a cyanotoxin produced by certain cyanobacteria species, most notably Moorea producens (formerly Lyngbya majuscula). It is produced as defense mechanism to ward off any would-be predators of the bacterium, being a potent blister agent as well as carcinogen. Low concentrations cause a common skin condition known as seaweed dermatitis.
Lyngbyatoxin is a terpenoid indole alkaloid that belongs to the class of non-ribosomal peptides (NRP). Lyngbyatoxin contains a nucleophilic indole ring that takes part in the activation of protein kinases. Figure 1, shows the biosynthesis of Lyngbyatoxin reported by Neilan et al. and Gerwick et al.The non-ribosomal peptide synthase (NRPS) LtxA protein condenses L-methyl-valine and L-tryptophan to form the linear dipeptide N-methyl-L-valyl-L-tryptophan. The latter is released via a NADPH-dependent reductive cleavage to form the aldehyde which is subsequently reduced to the corresponding alcohol. Then LtxB which is a P450-dependent monooxygenase serves as a catalyst in the oxidation and subsequent cyclization of N-methyl-L-valyl-L-tryptophan.Finally, LtxC which is a reverse prenyltransferase performs the transfer of a geranyl pyrophosphate (GPP) to carbon-7 of the indole ring which is accompanied by the lost of pyrophosphate.