A mass driver or electromagnetic catapult is a proposed method of non-rocket spacelaunch which would use a linear motor to accelerate and catapult payloads up to high speeds. All existing and contemplated mass drivers use coils of wire energized by electricity to make electromagnets. Sequential firing of a row of electromagnets accelerates the payload along a path. After leaving the path, the payload continues to move due to momentum.
Although any device used to propel a ballistic payload is technically a mass driver, in this context a mass driver is essentially a coilgun that magnetically accelerates a package consisting of a magnetizable holder containing a payload. Once the payload has been accelerated, the two separate, and the holder is slowed and recycled for another payload.
Mass drivers can be used to propel spacecraft in three different ways: A large, ground-based mass driver could be used to launch spacecraft away from Earth, the Moon, or another body. A small mass driver could be on board a spacecraft, flinging pieces of material into space to propel itself. Another variation would have a massive facility on a moon or asteroid send projectiles to assist a distant craft.
Miniaturized mass drivers can also be used as weapons in a similar manner as classic firearms or cannon using chemical combustion. Hybrids between coilguns and railguns such as helical railguns are also possible.
Mass drivers need no physical contact between moving parts because the projectile is guided by dynamic magnetic levitation, allowing extreme reusability in the case of solid-state power switching, a life of theoretically up to millions of launches. While marginal costs tend to be accordingly low, initial development and construction costs are highly dependent on performance, especially the intended mass, acceleration, and velocity of projectiles. For instance, while Gerard O'Neill built his first mass driver in 1976–1977 with a $2000 budget, a short test model firing a projectile at 40 m/s and 33 g, his next model was an order of magnitude greater acceleration after a comparable increase in funding, and, a few years later, the University of Texas estimated that a mass driver firing a 10 kilogram projectile at 6000 m/s would cost $47 million.