In mathematics, in particular in mathematical analysis, the Whitney extension theorem is a partial converse to Taylor's theorem. Roughly speaking, the theorem asserts that if A is a closed subset of a Euclidean space, then it is possible to extend a given function of A in such a way as to have prescribed derivatives at the points of A. It is a result of Hassler Whitney.
A precise statement of the theorem requires careful consideration of what it means to prescribe the derivative of a function on a closed set. One difficulty, for instance, is that closed subsets of Euclidean space in general lack a differentiable structure. The starting point, then, is an examination of the statement of Taylor's theorem.
Given a real-valued Cm function f(x) on Rn, Taylor's theorem asserts that for each a, x, y ∈ Rn, there is a function Rα(x,y) approaching 0 uniformly as x,y → a such that