Medical physics (also called biomedical physics, medical biophysics or applied physics in medicine) is, generally speaking, the application of physics concepts, theories and methods to medicine or healthcare. Medical physics departments may be found in hospitals or universities.
In the case of hospital work, the term 'Medical Physicist' is the title of a specific healthcare profession with a specific mission statement (see below). Such Medical Physicists are often found in the following healthcare specialties: diagnostic and intervention radiology (also known as medical imaging), nuclear medicine, and radiation oncology (also known as radiotherapy). However, areas of specialty are widely varied in scope and breadth, e.g. clinical physiology (also known as physiological measurement, several countries), neurophysiology (Finland), radiation protection (many countries), and audiology (Netherlands).
University departments are of two types. The first type are mainly concerned with preparing students for a career as a hospital medical physicist and research focuses on improving the practice of the profession. A second type (increasingly called 'biomedical physics') has a much wider scope and may include research in any applications of physics to medicine from the study of biomolecular structure to microscopy and nanomedicine. For example, physicist Richard Feynman theorized about the future of nanomedicine. He wrote about the idea of a medical use for biological machines (see nanobiotechnology). Feynman and Albert Hibbs suggested that certain repair machines might one day be reduced in size to the point that it would be possible to (as Feynman put it) "swallow the doctor". The idea was discussed in Feynman's 1959 essay There's Plenty of Room at the Bottom.
In the case of hospital medical physics departments, the mission statement for Medical Physicists as adopted by the European Federation of Medical Physicists is the following:
"Medical Physicists will contribute to maintaining and improving the quality, safety and cost-effectiveness of healthcare services through patient-oriented activities requiring expert action, involvement or advice regarding the specification, selection, acceptance testing, commissioning, quality assurance/control and optimised clinical use of medical devices and regarding patient risks and protection from associated physical agents (e.g., x-rays, electromagnetic fields, laser light, radionuclides) including the prevention of unintended or accidental exposures; all activities will be based on current best evidence or own scientific research when the available evidence is not sufficient. The scope includes risks to volunteers in biomedical research, carers and comforters. The scope often includes risks to workers and public particularly when these impact patient risk"