*** Welcome to piglix ***

Metastable intermolecular composite


Nano-thermite or super-thermite is a metastable intermolecular composite (MICs) characterized by a particle size of its main constituents, a metal and a metal oxide, under 100 nanometers. This allows for high and customizable reaction rates. Nano-thermites contain an oxidizer and a reducing agent, which are intimately mixed on the nanometer scale. MICs, including nano-thermitic materials, are a type of reactive materials investigated for military use, as well as for general applications involving propellants, explosives, and pyrotechnics.

What distinguishes MICs from traditional thermites is that the oxidizer and a reducing agent, normally iron oxide and aluminium, are in the form of extremely fine powders (nanoparticles). This dramatically increases the reactivity relative to micrometre-sized powder thermite. As the mass transport mechanisms that slow down the burning rates of traditional thermites are not so important at these scales, the reaction proceeds much more quickly.

Historically, pyrotechnic or explosive applications for traditional thermites have been limited due to their relatively slow energy release rates. Because nanothermites are created from reactant particles with proximities approaching the atomic scale, energy release rates are far greater.

MICs or Super-thermites are generally developed for military use, propellants, explosives, and pyrotechnics. Research into military applications of nano-sized materials began in the early 1990s. Because of their highly increased reaction rate, nanosized thermitic materials are being studied by the U.S. military with the aim of developing new types of bombs several times more powerful than conventional explosives. Nanoenergetic materials can store more energy than conventional energetic materials and can be used in innovative ways to tailor the release of this energy. Thermobaric weapons are one potential application of nanoenergetic materials.


...
Wikipedia

...