Microfluidic whole genome haplotyping is a technique for the physical separation of individual chromosomes from a metaphase cell followed by direct resolution of the haplotype for each allele.
Whole genome haplotyping is the process of resolving personal haplotypes on a whole genome basis. Current methods of next generation sequencing are capable of identifying heterozygous loci, but they are not well suited to identify which polymorphisms exist on the same (in cis) or allelic (in trans) strand of DNA. Haplotype information contributes to the understanding of the potential functional effects of variants in cis or in trans. Haplotypes are more frequently resolved by inference through comparison with parental genotypes, or from population samples using statistical computational methods to determine linkage disequilibrium between markers. Direct haplotyping is possible through isolation of chromosomes or chromosome segments. Most molecular biology techniques for haplotyping can accurately determine haplotypes of only a limited region of the genome. Whole genome direct haplotyping involves the resolution of haplotype at the whole genome level, usually through the isolation of individual chromosomes.
A haplotype (haplo: from Ancient Greek ἁπλόος (haplóos, “single, simple”) is a contiguous section of closely linked segments of DNA within the larger genome that tend to be inherited together as a unit on a single chromosome. Haplotypes have no defined size and can refer to anything from a few closely linked loci up to an entire chromosome. The term is also used to describe groups of single-nucleotide polymorphisms (SNPs) that are statistically associated. Most of the knowledge of SNP association comes from the effort of the International HapMap Project, which has proved itself a powerful resource in the development of a publicly accessible database of human genetic variation.