*** Welcome to piglix ***

Mie scattering


The Mie solution to Maxwell's equations (also known as the Lorenz–Mie solution, the Lorenz–Mie–Debye solution or Mie scattering) describes the scattering of an electromagnetic plane wave by a homogeneous sphere. The solution takes the form of an infinite series of spherical multipole partial waves. It is named after Gustav Mie.

The term "Mie solution" is also used for solutions of Maxwell's equations for scattering by stratified spheres or by infinite cylinders, or other geometries where one can write separate equations for the radial and angular dependence of solutions. The term Mie theory is sometimes used for this collection of solutions and methods; it does not refer to an independent physical theory or law. More broadly, "Mie scattering" suggests situations where the size of the scattering particles is comparable to the wavelength of the light, rather than much smaller or much larger. Mie scattering (sometimes referred to as an non-molecular or aerosol particle scattering) takes place in the lower 4.5 km of the atmosphere, where there may be many essentially spherical particles present with diameters approximately equal to the size of the wavelength of the incident energy.

A modern formulation of the Mie solution to the scattering problem on a sphere can be found in many books, e.g., J. A. Stratton's Electromagnetic Theory. In this formulation, the incident plane wave as well as the scattering field is expanded into radiating spherical vector wave functions. The internal field is expanded into regular spherical vector wave functions. By enforcing the boundary condition on the spherical surface, the expansion coefficients of the scattered field can be computed.

For particles much larger or much smaller than the wavelength of the scattered light there are simple and excellent approximations that suffice to describe the behaviour of the system. But for objects whose size is similar to the wavelength, e.g., water droplets in the atmosphere, latex particles in paint, droplets in emulsions including milk, and biological cells and cellular components, a more exact approach is necessary.


...
Wikipedia

...