*** Welcome to piglix ***

Mineral reserve


Resource estimation is used to determine and define the ore tonnage and grade of a geological deposit, from the developed block model. There are different estimation methods (see below) used for different scenarios dependent upon the ore boundaries, geological deposit geometry, grade variability and the amount of time and money available. A typical resource estimation involves the construction of a geological and resource model with data from various sources. Depending on the nature of the information and whether the data is hard copy or computerized, the principal steps of computer resource estimation are:

An orebody model serves as the geological basis of all resource estimation, an orebody modeling project starts with a critical review of existing drill hole and surface or underground sample data as well as maps and plans with current geological interpretation. Drill hole and/or sample databases are set up to suit all the quantitative and qualitative information necessary to build a resource model. The creation of a geological model may include the following steps:

Once the geological modeling completed, the geological envelopes are divided into block models. Subsequently, the estimation of these blocks is done from "composites" that are point measures of the grade of ore in the rock. Several different mathematical methods can be used to do the estimation depends on the desired degree of precision, quality and quantity of data and of their nature.

The nearest neighbor method assigns grade values to blocks from the nearest sample point to the block. Closest sample gets a weight of one; all others get a weight of zero. In two dimensions, this method generate a Voronoi diagram composed of polygons each with a unique grade, in three dimensions this method generate a Voronoi diagram composed of polyhedra each with a unique grade.

In mathematics, a Voronoi diagram is a partitioning of a plane into regions based on distance to points in a specific subset of the plane. That set of points (called seeds, sites, or generators) is specified beforehand, and for each seed there is a corresponding region consisting of all points closer to that seed than to any other. These regions are called Voronoi cells. The Voronoi diagram of a set of points is dual to its Delaunay triangulation. Put simply, it's a diagram created by taking pairs of points that are close together and drawing a line that is equidistant between them and perpendicular to the line connecting them. That is, all points on the lines in the diagram are equidistant to the nearest two (or more) source points.


...
Wikipedia

...