Molecular epidemiology is a branch of epidemiology and medical science that focuses on the contribution of potential genetic and environmental risk factors, identified at the molecular level, to the etiology, distribution and prevention of disease within families and across populations. This field has emerged from the integration of molecular biology into traditional epidemiological research. Molecular epidemiology improves our understanding of the pathogenesis of disease by identifying specific pathways, molecules and genes that influence the risk of developing disease. More broadly, it seeks to establish understanding of how the interactions between genetic traits and environmental exposures result in disease.
The term "molecular epidemiology" was first coined by Kilbourne in a 1973 article entitled "The molecular epidemiology of influenza". The term became more formalized with the formulation of the first book on Molecular Epidemiology: Principles and Practice by Schulte and Perera. At the heart of this book is the impact of advances in molecular research that have given rise to and enable the measurement and exploitation of the biomarker as a vital tool to link traditional molecular and epidemiological research strategies to understand the underlying mechanisms of disease in populations.
While most molecular epidemiology studies are using conventional disease designation system for an outcome (with the use of exposures at the molecular level), compelling evidence indicates that disease evolution represents inherently heterogeneous process differing from person to person. Conceptually, each individual has a unique disease process different from any other individual ("the unique disease principle"), considering uniqueness of the exposome and its unique influence on molecular pathologic process in each individual. Studies to examine the relationship between an exposure and molecular pathologic signature of disease (particularly, cancer) became increasingly common throughout the 2000s. However, the use of molecular pathology in epidemiology posed unique challenges including lack of standardized methodologies and guidelines as well as paucity of interdisciplinary experts and training programs. The use of "molecular epidemiology" for this type of research masked the presence of these challenges, and hindered the development of methods and guidelines. Furthermore, the concept of disease heterogeneity appears to conflict with the premise that individuals with the same disease name have similar etiologies and disease processes.