Molecular paleontology refers to the recovery and analysis of DNA, proteins, carbohydrates, or lipids, and their diagenetic products from ancient human, animal, and plant remains. The field of molecular paleontology has yielded important insights into evolutionary events, species' diasporas, the discovery and characterization of extinct species. By applying molecular analytical techniques to DNA in fossils, one can quantify the level of relatedness between any two organisms for which DNA has been recovered.
Advancements in the field of molecular paleontology have allowed scientists to pursue evolutionary questions on a genetic level rather than relying on phenotypic variation alone. Using various biotechnological techniques such as DNA isolation, amplification, and sequencing scientists have been able to gain expanded new insights into the divergence and evolutionary history of countless organisms.
The study of molecular paleontology is said to have begun with the discovery by Abelson of 360 million year old amino acids preserved in fossil shells. However, Svante Pääbo is often the one considered to be the founder of the field of molecular paleontology.
The field of molecular paleontology has had several major advances since the 1950s and is a continuously growing field. Below is a timeline showing notable contributions that have been made.
mid-1950s: Abelson found preserved amino acids in fossil shells that were about 360 million years old. Produced idea of comparing fossil amino acid sequences with existing organism so that molecular evolution could be studied.
1970s: Fossil peptides are studied by amino acid analysis. Start to use whole peptides and .
Late 1970s: Palaeobotanists (can also be spelled as Paleobotanists) studied molecules from well-preserved fossil plants.