Motion Induced Blindness (MIB) is a phenomenon of visual disappearance or perceptual illusions observed in the lab, in which stationary visual stimuli disappear as if erased in front of an observer's eyes when masked with a moving background. Most recent research has shown that microsaccades counteract disappearance but are neither necessary nor sufficient to account for MIB.
Motion-induced blindness was originally discovered by Grindley and Townsend in 1965, followed by Ramachandran and Gregory in 1991. However it was given more attention and named when rediscovered by Bonneh, Cooperman, and Sagi in 2001. The researchers originally attributed its causes strictly to attentional mechanisms, seeing the visual system as operating in a winner-takes-it-all manner.
Troxler's fading, discovered by Troxler in 1804, is a very similar phenomenon in which an object away from one's focus of attention disappears and reappears irregularly. There is no necessity for a moving background for this illusion to occur. Other similar phenomena in which salient stimuli disappear and reappear include binocular rivalry, discovered as early as 1593,monocular rivalry, and flash suppression.
The illusion catches the brain ignoring or discarding information. This may be one of the brain's useful tricks, a deficiency - or perhaps both. An ongoing debate regarding the causes of MIB is still present in today's vision research, however the purely attentional mechanism explanation has been rejected and new theories were put forward.
There is a correlation between an individual’s switch rate during binocular rivalry and the rate of disappearance and reappearance in MIB in the same individual. This is most evident when the investigation involves an adequate sample from the 8-10X range of switch rates in the human population. In addition, TMS interruption of the MIB cycle is specific jointly, for both the hemisphere receiving the TMS pulse and the phase of the MIB cycle, with the disappearance phase susceptible to interruption via Left hemisphere TMS and the reappearance phase susceptible to Right hemisphere interruption. In this way, MIB is like binocular rivalry, where hemispheric manipulations using caloric vestibular stimulation or TMS also require the correct combination of cerebral hemisphere and phase (1/4 possibilities).