*** Welcome to piglix ***

N-type calcium channel


N-type calcium channels are voltage gated calcium channels that are distributed throughout the entire body. These channels are high voltage activated channels that are composed of alpha-1B subunits. The alpha subunit forms the pore through which the calcium enters and determines most of the channel properties. The alpha subunit is also known as the calcium channel, voltage dependent, N type, alpha 1 subunit (CANCA1B), or Cav2.29(which is used in therapeutic processes), which is humans encoded by the CANCA1B gene. They also contain associated subunits such as B1, B3, B4, α2δ, and possibly Y.These channels are known for their importance in the nervous system. They have a role in the migration of immature neurons before the establishment of their synaptic neuron, and they are critically involved in the release of neurotransmitters, which is also similar to the P-type channels. N-type calcium channels are also targets for the development of drugs to relieve chronic and neuropathic pain. They are also used for the treatment of Hypertension, Autism Spectrum Disorder, Osteoarthritis, and other medical diagnosis.N-type calcium channels function differently in the development of the hippocampal neurons by being that they don’t contribute until the later developmental stages of the hippocampal.These channels also have functions within the Kidney and the Heart. There are many N-type calcium channel blockers, but the main blocker is w-Conotoxins. These blockers can interfere with many therapeutic processes.

In addition to the α1 subunit, the following subunits are present in the N-type calcium channel:

N-type calcium channels are highly known for their function in the nervous system, but they are also involved with the function of the heart and kidneys. They are also important in neurotransmitter release because they are localized at the synaptic terminals. When the calcium flows into a single N-type calcium channel due to an action potential, it is necessary to trigger the fusion of the secretory vesicle. Research has shown that in the heart, when the N-type calcium channel blocker ω-Conotoxin is introduced causes there to be no more release of norepinephrine. This shows that only the N-type calcium channel, and not the L/P/Q type channels are involved in the release of norepinephrine. In the Kidneys, N-type calcium channels reduces glomerular pressure through dilation of arterioles when the channel is blocked.The inhibition of this channel by Calcium channel blockers can lead to renal microcirculation. N-type calcium channels have been shown to play a part in the localization of neurite growth in the sympathetic nervous system and the skin and spinal cord. The neurite outgrowth was shown to be inhibited through an interaction between laminin and the 11th loop of the n-type calcium channel structure. It has been suggested that neuritis outgrowth is inhibited by the influx of calcium through the growth cone, and this happens when the Cav2.2 subunit comes in contact with laminin 2 and in response can induce a stretch activation of the N-type calcium channel.


...
Wikipedia

...