Nuclear magnetic resonance crystallography (NMR crystallography) is a method which utilizes primarily NMR spectroscopy to determine the structure of solid materials on the atomic scale. Thus, solid-state NMR spectroscopy would be used primarily, possibly supplemented by quantum chemistry calculations (e.g. density functional theory),powder diffraction etc. If suitable crystals can be grown, any crystallographic method would generally be preferred to determine the crystal structure comprising in case of organic compounds the molecular structures and molecular packing. The main interest in NMR crystallography is in microcrystalline materials which are amenable to this method but not to X-ray, neutron and electron diffraction. This is largely because interactions of comparably short range are measured in NMR crystallography.
When applied to organic molecules, NMR crystallography aims at including structural information not only of a single molecule but also on the molecular packing (i.e. crystal structure). Contrary to X-ray, single crystals are not necessary with solid-state NMR and structural information can be obtained from high-resolution spectra of disordered solids. E.g. polymorphism is an area of interest for NMR crystallography since this is encountered occasionally (and may often be previously undiscovered) in organic compounds. In this case a change in the molecular structure and/or in the molecular packing can lead to polymorphism, and this can be investigated by NMR crystallography.
The spin interaction that is usually employed for structural analyses via solid state NMR spectroscopy is the magnetic dipolar interaction. Additional knowledge about other interactions within the studied system like the chemical shift or the electric quadrupole interaction can be helpful as well, and in some cases solely the chemical shift has been employed as e.g. for zeolites. The “dipole coupling”-based approach parallels protein NMR spectroscopy to some extent in that e.g. multiple residual dipolar couplings are measured for proteins in solution, and these couplings are used as constraints in the protein structure calculation.