*** Welcome to piglix ***

Neutron electric dipole moment


The neutron electric dipole moment (nEDM) is a measure for the distribution of positive and negative charge inside the neutron. A finite electric dipole moment can only exist if the centers of the negative and positive charge distribution inside the particle do not coincide. So far, no neutron EDM has been found. The current best upper limit amounts to |dn| < 3.0×10−26 e⋅cm.

A permanent electric dipole moment of a fundamental particle violates both parity (P) and time reversal symmetry (T). These violations can be understood by examining the neutron's magnetic dipole moment and hypothetical electric dipole moment. Under time reversal, the magnetic dipole moment changes its direction, whereas the electric dipole moment stays unchanged. Under parity, the electric dipole moment changes its direction but not the magnetic dipole moment. As the resulting system under P and T is not symmetric with respect to the initial system, these symmetries are violated in the case of the existence of an EDM. Having also CPT symmetry, the combined symmetry CP is violated as well.

As it is depicted above, in order to generate a finite nEDM one needs processes that violate CP symmetry. CP violation has been observed in weak interactions and is included in the Standard Model of particle physics via the CP-violating phase in the CKM matrix. However, the amount of CP violation is very small and therefore also the contribution to the nEDM: |dn| ~ 10−31 e⋅cm.


...
Wikipedia

...