A Noise generator is a circuit that produces electrical noise (i.e., a random signal). Noise generators are used to test signals for measuring noise figure, frequency response, and other parameters. Noise generators are also used for generating random numbers.
There are several circuits used for noise generation. For example, temperature-controlled resistors, temperature-limited vacuum diodes, zener diodes, and gas discharge tubes. A source that can be switched on and off ("gated") is beneficial for some test methods.
Noise generators usually rely on a fundamental noise process such thermal noise or shot noise.
Thermal noise can be a fundamental standard. A resistor at a certain temperature has a thermal noise associated with it. A noise generator might have two resistors at different temperatures and switch between the two resistors. The resulting output power is low. (For a 1 kΩ resistor at room temperature and a 10 kHz bandwidth, the RMS noise voltage is 400 nV.)
If electrons flow across a barrier, then they have discrete arrival times. Those discrete arrivals exhibit shot noise. The output noise level of a shot noise generator is easily set by the DC bias current. Typically, the barrier in a diode is used.
Different noise generator circuits use different methods of setting the DC bias current.
One common noise source was a thermally-limited (saturated-emission) hot-cathode vacuum tube diode. These sources could serve as white noise generators from a few kilohertz through UHF and were available in normal radio tube glass envelopes. Flicker (1/f) noise limited application at lower frequencies; electron transit time limited application at higher frequencies. The basic design was a diode vacuum tube with a heated filament. The temperature of the cathode (filament) sets the anode (plate) current that determines the shot noise; see Richardson equation. The anode voltage is set large enough to collect all the electrons emitted by the filament. If the plate voltage were too low, then there would be space charge near the filament that would affect the noise output. For a calibrated generator, care must be taken so that the shot noise dominates the thermal noise of the tube's plate resistance and other circuit elements.