In mathematics, p-adic analysis is a branch of number theory that deals with the mathematical analysis of functions of p-adic numbers.
The theory of complex-valued numerical functions on the p-adic numbers is part of the theory of locally compact groups. The usual meaning taken for p-adic analysis is the theory of p-adic-valued functions on spaces of interest.
Applications of p-adic analysis have mainly been in number theory, where it has a significant role in diophantine geometry and diophantine approximation. Some applications have required the development of p-adic functional analysis and spectral theory. In many ways p-adic analysis is less subtle than classical analysis, since the ultrametric inequality means, for example, that convergence of infinite series of p-adic numbers is much simpler. Topological vector spaces over p-adic fields show distinctive features; for example aspects relating to convexity and the Hahn–Banach theorem are different.
Ostrowski's theorem, due to Alexander Ostrowski (1916), states that every non-trivial absolute value on the rational numbers Q is equivalent to either the usual real absolute value or a p-adic absolute value.