Paracrystalline materials are defined as having short and medium range ordering in their lattice (similar to the liquid crystal phases) but lacking crystal like long-range ordering at least in one direction.
Ordering is the regularity in which atoms appear in a predictable lattice, as measured from one point. In a highly ordered, perfectly crystalline material, or single crystal, the location of every atom in the structure can be described exactly measuring out from a single origin. Conversely, in a disordered structure such as a liquid or amorphous solid, the location of the first and perhaps second nearest neighbors can be described from an origin (with some degree of uncertainty) and the ability to predict locations decreases rapidly from there out. The distance at which atom locations can be predicted is referred to as the correlation length . A paracrystalline material exhibits correlation somewhere between the fully amorphous and fully crystalline.
The primary, most accessible source of crystallinity information is X-ray diffraction and cryo-electron microscopy, although other techniques may be needed to observe the complex structure of paracrystalline materials, such as fluctuation electron microscopy in combination with Density of states modeling of electronic and vibrational states. Scanning transmission electron microscopy can provide real-space and reciprocal space characterization of paracrystallinity in nanoscale material, such as quantum dot solids.