Philip M. Woodward | |
---|---|
Born | 6 September 1919 |
Residence | Malvern, Worcestershire |
Fields | signal processing, computing, horology |
Institutions | Telecommunications Research Establishment, Royal Signals and Radar Establishment |
Alma mater | Oxford University |
Known for | ambiguity function |
Influences | Harold Jeffreys, Claude Shannon |
Notable awards | Lifetime achievement award of the Royal Academy of Engineering (2005) IEEE Dennis J. Picard medal for radar technologies and applications (2009) Tompion medal of the Worshipful Company of Clockmakers (2009) |
Philip Woodward (born 6 September 1919) is a British mathematician, radar engineer and horologist. He has achieved notable success in all three fields. Before retirement, he was a Deputy Chief Scientific Officer at the Royal Signals and Radar Establishment (RSRE) of the British Ministry of Defence in Malvern, Worcestershire.
Philip Woodward's career in the Scientific Civil Service spanned four decades. He was responsible for one of the UK's first electronic computers (TREAC) followed by the UK's first solid state computer (RREAC). He is the author of the book Probability and Information Theory, with Applications to Radar.
During World War II, Philip Woodward developed a mathematical beam-shaping technique for radar antennae, which was later to become standard in the analysis of communication signals. His principal achievement in radar was to evaluate the ambiguities inherent in all radar signals and to show how Bayesian probability can be used as part of the design process to eliminate all but the wanted information the echoes might contain.
In 1956, Woodward’s work on radar information theory led Nobel Prize winning physicist John H. Van Vleck to invite him to give a postgraduate course on random processes at Harvard University. Professor E. T. Jaynes in his posthumously published book recognized Woodward as having been "many years ahead of his time" and as having shown "prophetic insight into what was to come" in the application of probability and statistics to the recovery of data from noisy samples. In the 1960s Philip Woodward's computer software team in Malvern provided the Royal Radar Establishment with the ALGOL 68R compiler, the world's first implementation of the programming language ALGOL 68, and provided the armed services with their first standard high-level programming language, Coral 66, for the small military computers of the day.