*** Welcome to piglix ***

Polar motion


Polar motion of the Earth is the motion of the Earth's rotational axis relative to its crust. This is measured with respect to a reference frame in which the solid Earth is fixed (a so-called Earth-centered, Earth-fixed or ECEF reference frame). This variation is only a few meters.

Polar motion is defined relative to a conventionally defined reference axis, the CIO (Conventional International Origin), being the pole's average location over the year 1900. It consists of three major components: a free oscillation called Chandler wobble with a period of about 435 days, an annual oscillation, and an irregular drift in the direction of the 80th meridian west, which has lately been shifted toward the east.

The mean displacement far exceeds the magnitude of the wobbles. This can lead to errors in software for Earth observing spacecraft, since analysts may read off a 5-meter circular motion and ignore it, while a 20-meter offset exists, fouling the accuracy of the calculated latitude and longitude. The latter are determined based on the International Terrestrial Reference System, which follows the polar motion.

The slow drift, about 20 m since 1900, is partly due to motions in the Earth's core and mantle, and partly to the redistribution of water mass as the Greenland ice sheet melts, and to isostatic rebound, i.e. the slow rise of land that was formerly burdened with ice sheets or glaciers. The drift is roughly along the 80th meridian west. However, since about year 2000, the pole has found new direction of drift, which is roughly along the central meridian. This dramatic eastward shift in drift direction is attributed to the global scale mass transport between the oceans and the continents.

Major earthquakes cause abrupt polar motion by altering the volume distribution of the Earth's solid mass. These shifts, however, are quite small in magnitude relative to the long-term core/mantle and isostatic rebound components of polar motion.


...
Wikipedia

...