*** Welcome to piglix ***

Quark number


In particle physics, the baryon number is a strictly conserved additive quantum number of a system. It is defined as

where nq is the number of quarks, and nq is the number of antiquarks. Baryons (three quarks) have a baryon number of +1, mesons (one quark, one antiquark) have a baryon number of 0, and antibaryons (three antiquarks) have a baryon number of −1. Exotic hadrons like pentaquarks (four quarks, one antiquark) and tetraquarks (two quarks, two antiquarks) are also classified as baryons and mesons depending on their baryon number.

Quarks carry not only electric charge, but also charges such as color charge and weak isospin. Because of a phenomenon known as color confinement, a hadron cannot have a net color charge; that is, the total color charge of a particle has to be zero ("white"). A quark can have one of three "colors", dubbed "red", "green", and "blue".

For normal hadrons, a white color can thus be achieved in one of three ways:

The baryon number was defined long before the quark model was established, so rather than changing the definitions, particle physicists simply gave quarks one third the baryon number. Nowadays it might be more accurate to speak of the conservation of quark number.

In theory, exotic hadrons can be formed by adding pairs of quark and antiquark, provided that each pair has a matching color/anticolor. For example, a pentaquark (four quarks, one antiquark) could have the individual quark colors: red, green, blue, blue, and antiblue. In 2015, the LHCb collaboration at CERN reported results consistent with pentaquark states in the decay of bottom Lambda baryons (Λ0
b
).


...
Wikipedia

...