*** Welcome to piglix ***

Radar signal characteristics


A radar system uses a radio frequency electromagnetic signal reflected from a target to determine information about that target. In any radar system, the signal transmitted and received will exhibit many of the characteristics described below.

The diagram below shows the characteristics of the transmitted signal in the time domain. Note that in this and in all the diagrams within this article, the x axis is exaggerated to make the explanation clearer.

The carrier is an RF signal, typically of microwave frequencies, which is usually (but not always) modulated to allow the system to capture the required data. In simple ranging radars, the carrier will be pulse modulated and in continuous wave systems, such as Doppler radar, modulation may not be required. Most systems use pulse modulation, with or without other supplementary modulating signals. Note that with pulse modulation, the carrier is simply switched on and off in sync with the pulses; the modulating waveform does not actually exist in the transmitted signal and the envelope of the pulse waveform is extracted from the demodulated carrier in the receiver. Although obvious when described, this point is often missed when pulse transmissions are first studied, leading to misunderstandings about the nature of the signal.

The pulse width () (or pulse duration) of the transmitted signal is to ensure that the radar emits sufficient energy to allow that the reflected pulse is detectable by its receiver. The amount of energy that can be delivered to a distant target is the product of two things; the output power of the transmitter, and the duration of the transmission. Therefore, pulse width constrains the maximum detection range of a target.

It also determines the range discrimination, that is the capacity of the radar to distinguish between two targets fairly close together. At any range, with similar azimuth and elevation angles and as viewed by a radar with an unmodulated pulse, the range discrimination is approximately equal in distance to half of the pulse duration.


...
Wikipedia

...