Nuclear fallout, or simply fallout, is the residual radioactive material propelled into the upper atmosphere following a nuclear blast, so called because it "falls out" of the sky after the explosion and the shock wave have passed. It commonly refers to the radioactive dust and ash created when a nuclear weapon explodes. Fallout may get entrained with the products of a pyrocumulus cloud and fall as black rain (rain darkened by soot and other particulates).
This radioactive dust, usually consisting of fission products mixed with bystanding atoms that are neutron activated by exposure, is a highly dangerous kind of radioactive contamination.
An air burst (that is, a nuclear detonation far above the surface) can eventually produce worldwide fallout. A ground burst can produce possibly much more severe, local fallout.
After an air burst, fission products, un-fissioned nuclear material, and weapon residues vaporized by the heat of the fireball condense into a fine suspension of small particles 10 nm to 20 µm in diameter. These particles may be quickly drawn up into the stratosphere, particularly if the explosive yield exceeds 10 kt.
Initially little was known about the dispersion of nuclear fallout on a global scale. The AEC assumed that fallout would be dispersed evenly across the globe by atmospheric winds and gradually settle to the Earth's surface after weeks, months, and even years as worldwide fallout.
The radio-biological hazard of worldwide fallout is a long-term one because of the potential accumulation of long-lived radioisotopes (such as strontium-90 and caesium-137) in the body as a result of ingestion of foods containing the radioactive materials. Because they are dispersed, levels of these isotopes are small for individual nuclear events. Local fallout is more concentrated and of far more immediate concern.