*** Welcome to piglix ***

Ramanujan graphs


In spectral graph theory, a Ramanujan graph, named after Srinivasa Ramanujan, is a regular graph whose spectral gap is almost as large as possible (see extremal graph theory). Such graphs are excellent spectral expanders.

Examples of Ramanujan graphs include the clique, the biclique , and the Petersen graph. As Murty's survey paper notes, Ramanujan graphs "fuse diverse branches of pure mathematics, namely, number theory, representation theory, and algebraic geometry". As observed by Toshikazu Sunada, a regular graph is Ramanujan if and only if its Ihara zeta function satisfies an analog of the Riemann hypothesis.

Let be a connected -regular graph with vertices, and let be the eigenvalues of the adjacency matrix of . Because is connected and -regular, its eigenvalues satisfy . Whenever there exists with , define


...
Wikipedia

...