*** Welcome to piglix ***

Rotation around a fixed axis


Rotation around a fixed axis is a special case of rotational motion. The fixed axis hypothesis excludes the possibility of an axis changing its orientation, and cannot describe such phenomena as wobbling or precession. According to Euler's rotation theorem, simultaneous rotation along a number of stationary axes at the same time is impossible. If two rotations are forced at the same time, a new axis of rotation will appear.

This article assumes that the rotation is also stable, such that no torque is required to keep it going. The kinematics and dynamics of rotation around a fixed axis of a rigid body are mathematically much simpler than those for free rotation of a rigid body; they are entirely analogous to those of linear motion along a single fixed direction, which is not true for free rotation of a rigid body. The expressions for the kinetic energy of the object, and for the forces on the parts of the object, are also simpler for rotation around a fixed axis, than for general rotational motion. For these reasons, rotation around a fixed axis is typically taught in introductory physics courses after students have mastered linear motion; the full generality of rotational motion is not usually taught in introductory physics classes.

A rigid body is an object of finite extent in which all the distances between the component particles are constant. No truly rigid body exists; external forces can deform any solid. For our purposes, then, a rigid body is a solid which requires large forces to deform it appreciably.

A change in the position of a particle in three-dimensional space can be completely specified by three coordinates. A change in the position of a rigid body is more complicated to describe. It can be regarded as a combination of two distinct types of motion: translational motion and rotational motion.

Purely translational motion occurs when every particle of the body has the same instantaneous velocity as every other particle; then the path traced out by any particle is exactly parallel to the path traced out by every other particle in the body. Under translational motion, the change in the position of a rigid body is specified completely by three coordinates such as x, y, and z giving the displacement of any point, such as the center of mass, fixed to the rigid body.


...
Wikipedia

...