Names | |
---|---|
IUPAC name
cyclo-tris(tetracarbonylruthenium)
|
|
Other names
Ruthenium carbonyl
|
|
Identifiers | |
ECHA InfoCard | 100.035.701 |
Properties | |
C12O12Ru3 | |
Molar mass | 639.33 g/mol |
Appearance | orange solid |
Density | 2.48 g/cm3 |
Melting point | 224 °C (435 °F; 497 K) |
Boiling point | sublimes in vacuum |
insoluble | |
Solubility in organic solvents | soluble |
Structure | |
D3h cluster | |
0 D | |
Hazards | |
Main hazards | Toxic, CO Source |
Related compounds | |
Related compounds
|
Triiron dodecacarbonyl Triosmium dodecacarbonyl |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Triruthenium dodecacarbonyl is the chemical compound with the formula Ru3(CO)12. Classified as metal carbonyl cluster, it is a dark orange-colored solid that is soluble in nonpolar organic solvents. The compound serves as a precursor to other organoruthenium compounds.
The cluster has D3h symmetry, consisting of an equilateral triangle of Ru atoms, each of which bears two axial and two equatorial CO ligands.Os3(CO)12 has the same structure, whereas Fe3(CO)12 is different, with two bridging CO ligands, resulting in C2v symmetry.
Ru3(CO)12 is prepared by treating solutions of ruthenium trichloride with carbon monoxide, usually under high pressure. The stoichiometry of the reaction is uncertain, one possibility being the following:
The chemical properties of Ru3(CO)12 have been widely studied, and the cluster has been converted to hundreds of derivatives. High pressures of CO convert the cluster to the monomeric ruthenium pentacarbonyl, which reverts to the parent cluster upon standing.
The instability of Ru(CO)5 contrasts with the robustness of the corresponding Fe(CO)5. The condensation of Ru(CO)5 into Ru3(CO)12 proceeds via initial, rate-limiting loss of CO to give the unstable, coordinatively unsaturated species Ru(CO)4. This tetracarbonyl binds Ru(CO)5, initiating the condensation.
Upon warming under a pressure of hydrogen, Ru3(CO)12 converts to the tetrahedral cluster H4Ru4(CO)12. Ru3(CO)12 undergoes substitution reactions with Lewis bases: