SSE2 (Streaming SIMD Extensions 2), is one of the Intel SIMD (Single Instruction, Multiple Data) processor supplementary instruction sets first introduced by Intel with the initial version of the Pentium 4 in 2001. It extends the earlier SSE instruction set, and is intended to fully replace MMX. Intel extended SSE2 to create SSE3 in 2004. SSE2 added 144 new instructions to SSE, which has 70 instructions. Competing chip-maker AMD added support for SSE2 with the introduction of their Opteron and Athlon 64 ranges of AMD64 64-bit CPUs in 2003.
Most of the SSE2 instructions implement the integer vector operations also found in MMX. They use the XMM registers instead of the MMX registers, which are wider and allow for significant performance improvements in specialized applications. Another advantage of replacing MMX with SSE2 is avoiding the mode switching penalty for issuing x87 instructions present in MMX because it is sharing register space with the x87 FPU. The SSE2 also complements the floating-point vector operations of the SSE instruction set by adding support for the double precision data type.
Other SSE2 extensions include a set of cache control instructions intended primarily to minimize cache pollution when processing infinite streams of information, and a sophisticated complement of numeric format conversion instructions.
AMD's implementation of SSE2 on the AMD64 (x86-64) platform includes an additional eight registers, doubling the total number to 16 (XMM0 through XMM15). These additional registers are only visible when running in 64-bit mode. Intel adopted these additional registers as part of their support for x86-64 architecture (or in Intel's parlance, "Intel 64") in 2004.
FPU (x87) instructions provide higher precision by calculating intermediate results with 80 bits of precision, by default, to minimise roundoff error in numerically unstable algorithms (see IEEE 754 design rationale and references therein). However, the x87 FPU is a scalar unit only whereas SSE2 can process a small vector of operands in parallel.