*** Welcome to piglix ***

Silanol


A silanol is a functional group in silicon chemistry with the connectivity Si–O–H. It is related to the hydroxy functional group (C–O–H) found in all alcohols. Silanols are often invoked as intermediates in organosilicon chemistry and silicate mineralogy.

The first isolated example of a silanol was Et3SiOH, reported in 1871 by Albert Ladenburg. He prepared the “silicol” by hydrolysis of Et3SiOEt (Et = C2H5).

Silanols are generally synthesized by hydrolysis of halosilanes, alkoxysilanes, or aminosilanes. Chlorosilanes are the most common reactants:

The hydrolysis of fluorosilanes requires more forcing reagents, i.e. alkali. The alkoxysilanes (silyl ethers) of the type R3Si(OR') are slow to hydrolyze. Compared to the silyl ethers, silyl acetates are faster to hydrolyze, with the advantage that the released acetic acid is less aggressive. For this reason silyl acetates are sometimes recommended for applications.

An alternative route involves oxidation of hydrosilanes. A wide range of oxidants have been employed including air, peracids, dioxiranes, and potassium permanganate (for hindered silanes). In the presence of metal catalysts, silanes undergo hydrolysis:

The Si–O bond distance is typically about 1.65 Å. In the solid state, silanols engage in hydrogen-bonding.

Most silanols have only one OH group, e.g. trimethylsilanol. Also known are some silanediols, e.g., diphenylsilanediol. For sterically bulky substituents, even silanetriols have been prepared.

Silanols are more acidic than the corresponding alcohols. This trend contrasts with the fact that Si is far less electronegative than carbon (1.90 vs 2.55, respectively). For Et3SiOH, the pKa is estimated at 13.6 vs. 19 for tert-butyl alcohol. The pKa of (3-ClC6H4)Si(CH3)2OH is 11. Because of their greater acidity, silanols can be fully deprotonated in aqueous solution, especially the arylsilanols. The conjugate base is called a siloxide or a silanolate.


...
Wikipedia

...