Names | |
---|---|
IUPAC name
silver(I,III) Oxide
|
|
Other names
silver peroxide, argentic oxide, silver suboxide, divasil
|
|
Identifiers | |
ECHA InfoCard | 100.013.726 |
Properties | |
AgO Ag2O.Ag2O3 |
|
Molar mass | 123.87 g/mol |
Appearance | grey-black powder diamagnetic |
Density | 7.48 g/cm3 |
Melting point | >100 °C, decomposition |
.0027 g/100 mL | |
Solubility | soluble in alkalis |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Ag2O.Ag2O3
Silver(I,III) oxide is the inorganic compound with the formula Ag4O4. It is a component of silver oxide-zinc alkaline batteries. It can be prepared by the slow addition of a silver(I) salt to a persulfate solution e.g. AgNO3 to a Na2S2O8 solution. It adopts an unusual structure, being a mixed-valence compound. It is a dark brown solid that decomposes with evolution of O2 in water. It dissolves in concentrated nitric acid to give brown solutions containing the Ag2+ ion.
Although its empirical formula, AgO, suggests that silver is in the +2 oxidation state in this compound, AgO is in fact diamagnetic. X-ray diffraction studies show that the silver atoms adopt two different coordination environments, one having two collinear oxide neighbours and the other four coplanar oxide neighbours. AgO is therefore formulated as AgIAgIIIO2 or Ag2O·Ag2O3. It is being a 1:1 molar mixture of silver(I) oxide, Ag2O, and silver(III) oxide, Ag2O3. It has previously been called silver peroxide, which is incorrect since does not contain the peroxide ion, O22−.
US patent 4003757 (Lux and Chobanov) describes one method for preparing this oxide (then called Ag(II)-oxide) in a form suitable for batteries and gives the following example:
In 1.5 liters of aqueous solution containing 150 grams of sodium hydroxide, 65 grams of silver powder are suspended with continuous stirring. The silver powder has a density of approximately 1.6 grams per cubic centimeter. Its grain size distribution is: 52% under 10 microns; 33% 10 microns to 30 microns, 15% above 30 microns.
The liquid is then heated to about 85° C. Upon reaching this temperature, a total of 200 grams of potassium peroxidisulfate (K2S2O8) in portions of about 40 grams each is added at intervals of, for example, 1 hour. After addition of the final portion of oxidant, stirring is continued for 3 hours. The product is then filtered, washed to free it of alkali substances, dried at a temperature of approximately 80° C and reduced to particle form.