In particle theory, the skyrmion (/ˈskɜːrmi.ɒn/) is a hypothetical particle related originally to baryons. It was described by Tony Skyrme in 1962 and consists of a quantum superposition of baryons and resonance states. It could be predicted from some nuclear matter properties.
Skyrmions as topological objects are important in solid state physics, especially in the emerging technology of spintronics. A two-dimensional magnetic skyrmion, as a topological object, is formed, e.g., from a 3D effective-spin "hedgehog" (in the field of micromagnetics: out of a so-called "Bloch point" singularity of homotopy degree +1) by a stereographic projection, whereby the positive north-pole spin is mapped onto a far-off edge circle of a 2D-disk, while the negative south-pole spin is mapped onto the center of the disk.
In field theory, skyrmions are homotopically non-trivial classical solutions of a nonlinear sigma model with a non-trivial target manifold topology – hence, they are topological solitons. An example occurs in chiral models of mesons, where the target manifold is a homogeneous space of the structure group