Snedecor's F distribution
Fisher-Snedecor
Probability density function
|
Cumulative distribution function
|
Parameters |
d1, d2 > 0 deg. of freedom |
Support |
x ∈ [0, +∞) |
PDF |
![{\frac {{\sqrt {{\frac {(d_{1}\,x)^{{d_{1}}}\,\,d_{2}^{{d_{2}}}}{(d_{1}\,x+d_{2})^{{d_{1}+d_{2}}}}}}}}{x\,{\mathrm {B}}\!\left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}\!](https://wikimedia.org/api/rest_v1/media/math/render/svg/65803c3bdaed5d4c035f6366343875341620b203) |
CDF |
![I_{{{\frac {d_{1}x}{d_{1}x+d_{2}}}}}\left({\tfrac {d_{1}}{2}},{\tfrac {d_{2}}{2}}\right)](https://wikimedia.org/api/rest_v1/media/math/render/svg/7d62d2ffb6f95571e911c905fd6e04e94eb18377) |
Mean |
![{\frac {d_{2}}{d_{2}-2}}\!](https://wikimedia.org/api/rest_v1/media/math/render/svg/42bc770a649bafe0249c3f8c4614b45f42241f0a)
for d2 > 2 |
Mode |
![{\frac {d_{1}-2}{d_{1}}}\;{\frac {d_{2}}{d_{2}+2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fa498a3d7ae8205dd2c0dc4a1a325dbec007aa83)
for d1 > 2 |
Variance |
![{\frac {2\,d_{2}^{2}\,(d_{1}+d_{2}-2)}{d_{1}(d_{2}-2)^{2}(d_{2}-4)}}\!](https://wikimedia.org/api/rest_v1/media/math/render/svg/ce64d1edab4849983bd9d1590b30ce8a3d65ca73)
for d2 > 4 |
Skewness |
![{\frac {(2d_{1}+d_{2}-2){\sqrt {8(d_{2}-4)}}}{(d_{2}-6){\sqrt {d_{1}(d_{1}+d_{2}-2)}}}}\!](https://wikimedia.org/api/rest_v1/media/math/render/svg/ac47c2f77fbcda51696e9f0819ff405c7f4c5b47)
for d2 > 6 |
Ex. kurtosis |
see text |
Entropy |
![{\displaystyle \ln \Gamma \left({\tfrac {d_{1}}{2}}\right)+\ln \Gamma \left({\tfrac {d_{2}}{2}}\right)-\ln \Gamma \left({\tfrac {d_{1}+d_{2}}{2}}\right)+\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a507d266e4e8fc6eeecff472ac0cd3c55b8ed681)
![{\displaystyle \left(1-{\tfrac {d_{1}}{2}}\right)\psi \left(1+{\tfrac {d_{1}}{2}}\right)-\left(1+{\tfrac {d_{2}}{2}}\right)\psi \left(1+{\tfrac {d_{2}}{2}}\right)\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f87cb3fbf968cbc40c36c51e6cc777bdfcfacb93)
|
MGF |
does not exist, raw moments defined in text and in |
CF |
see text |
In probability theory and statistics, the F-distribution, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor) is a continuous probability distribution that arises frequently as the null distribution of a test statistic, most notably in the analysis of variance (ANOVA), e.g., F-test.
If a random variable X has an F-distribution with parameters d1 and d2, we write X ~ F(d1, d2). Then the probability density function (pdf) for X is given by
for real x ≥ 0. Here
is the beta function. In many applications, the parameters d1 and d2 are positive integers, but the distribution is well-defined for positive real values of these parameters.
The cumulative distribution function is
...
Wikipedia