Spin Chemistry is a sub-field of chemistry and physics, positioned at the intersection of chemical kinetics, , magnetic resonance and free radical chemistry, and dealing with magnetic and spin effects in chemical reactions. The examples of phenomena that Spin Chemistry deals with are Chemically Induced Dynamic Nuclear and Electron Polarization (CIDNP and CIDEP), magnetic isotope effects in chemical reactions, as well as the environmental, health effects of static and oscillating electromagnetic fields, and avian magnetoreception, particularly as radical-pair reaction kinetics are dependent on the direction of magnetic fields.
Some of the prominent scientists in the field (in alphabetical order) are:
The radical-pair mechanism explains how a magnetic field can affect reaction kinetics by affecting electron spin dynamics. Most commonly demonstrated in reactions of organic compounds involving radical intermediates, a magnetic field can speed up a reaction by decreasing the frequency of reverse reactions.
The radical-pair mechanism emerged as an explanation to CIDNP and CIDEP and was proposed in 1969 by Closs; Captein and Oosterhoff.
A radical, of course, is a molecule with an odd number of electrons, and is induced in a variety of ways, including ultra-violet radiation. A sun burn is largely due to radical formation from this radiation. The radical-pair, however, is not simply two radicals. This is because radical-pairs (specifically singlets) are quantum entangled, even as separate molecules. More fundamental to the radical-pair mechanism, however, is the fact that radical-pair electrons both have spin, short for spin angular momentum, which gives each separate radical a magnetic moment. Therefore, spin states can be altered by magnetic fields.