*** Welcome to piglix ***

Spinor


In geometry and physics, spinors are elements of a (complex) vector space that can be associated with Euclidean space. Like geometric vectors and more general tensors, spinors transform linearly when the Euclidean space is subjected to a slight (infinitesimal) rotation. When a sequence of such small rotations is composed (integrated) to form an overall final rotation, however, the resulting spinor transformation depends on which sequence of small rotations was used: unlike vectors and tensors, a spinor transforms to its negative when the space is rotated through a complete turn from 0° to 360° (see picture). This property characterizes spinors. It is also possible to associate a substantially similar notion of spinor to Minkowski space in which case the Lorentz transformations of special relativity play the role of rotations. Spinors were introduced in geometry by Élie Cartan in 1913. In the 1920s physicists discovered that spinors are essential to describe the intrinsic angular momentum, or "spin", of the electron and other subatomic particles.

Spinors are characterized by the specific way in which they behave under rotations. They change in different ways depending not just on the overall final rotation, but the details of how that rotation was achieved (by a continuous path in the rotation group). There are two topologically distinguishable classes (homotopy classes) of paths through rotations that result in the same overall rotation, as famously illustrated by the belt trick puzzle (below). These two inequivalent classes yield spinor transformations of opposite sign. The spin group is the group of all rotations keeping track of the class. It doubly covers the rotation group, since each rotation can be obtained in two inequivalent ways as the endpoint of a path. The space of spinors by definition is equipped with a (complex) linear representation of the spin group, meaning that elements of the spin group act as linear transformations on the space of spinors, in a way that genuinely depends on the homotopy class.


...
Wikipedia

...