Direct-reduced iron (DRI), also called sponge iron, is produced from the direct reduction of iron ore (in the form of lumps, pellets or fines) to iron by a reducing gas or elementary carbon produced from natural gas or coal. Many ores are suitable for direct reduction.
Reduced iron derives its name from the chemical change that iron ore undergoes when it is heated in a furnace at high temperatures in the presence of hydrocarbon-rich gases, carbon monoxide or elementary carbon. Direct reduction refers to processes which reduce iron oxides to metallic iron at temperatures below the melting point of iron. The product of such solid state processes are called direct reduced iron. The reducing gas is a mixture of gases, primarily hydrogen (H2) and carbon monoxide (CO). The process temperature is typically 800 to 1200 °C.
Direct reduction processes can be divided roughly into two categories, gas-based, and coal-based. In both cases, the objective of the process is to drive off the oxygen contained in various forms of iron ore (sized ore, concentrates, pellets, mill scale, furnace dust etc.), in order to convert the ore, without melting it (below 1200 °C), to metallic iron.
The direct reduction process is comparatively energy efficient. Steel made using DRI requires significantly less fuel, in that a traditional blast furnace is not needed. DRI is most commonly made into steel using electric arc furnaces to take advantage of the heat produced by the DRI product.
In modern times, direct reduction processes have been developed to specifically overcome the difficulties of conventional blast furnaces. DRI is successfully manufactured in various parts of the world. The initial investment and operating costs of direct reduction plants are low compared to integrated steel plants and are more suitable for developing countries where supplies of coking coal are limited.
Factors that help make DRI economical:
India is the world’s largest producer of direct-reduced iron, a vital constituent of the steel industry. Many other countries use variants of the process, so providing iron for local engineering industries.
Directly reduced iron is highly susceptible to oxidation and rusting if left unprotected, and is normally quickly processed further to steel. The bulk iron can also catch fire since it is pyrophoric. Unlike blast furnace pig iron, which is almost pure metal, DRI contains some siliceous gangue, which needs to be removed in the steel-making process.