*** Welcome to piglix ***

Spooky action at a distance


In physics, action at a distance is the concept that an object can be moved, changed, or otherwise affected without being physically touched (as in mechanical contact) by another object. That is, it is the nonlocal interaction of objects that are separated in space. Pioneering physicist Albert Einstein described the phenomenon as "spooky action at a distance".

This term was used most often in the context of early theories of gravity and electromagnetism to describe how an object responds to the influence of distant objects. For example, Coulomb's law and the law of universal gravitation are such early theories.

More generally "action at a distance" describes the failure of early atomistic and mechanistic theories which sought to reduce all physical interaction to collision. The exploration and resolution of this problematic phenomenon led to significant developments in physics, from the concept of a field, to descriptions of quantum entanglement and the mediator particles of the Standard Model.

Efforts to account for action at a distance in the theory of electromagnetism led to the development of the concept of a field which mediated interactions between currents and charges across empty space. According to field theory we account for the Coulomb (electrostatic) interaction between charged particles through the fact that charges produce around themselves an electric field, which can be felt by other charges as a force. Maxwell directly addressed the subject of action-at-a-distance in chapter 23 of his A Treatise on Electricity and Magnetism in 1873. He began by reviewing the explanation of Ampere's formula given by Gauss and Weber. On page 437 he indicates the physicists' disgust with action at a distance. In 1845 Gauss wrote to Weber desiring "action, not instantaneous, but propagated in time in a similar manner to that of light." This aspiration was developed by Maxwell with the theory of an electromagnetic field described by Maxwell's equations, which used the field to elegantly account for all electromagnetic interactions, as well as light (which, until then, had been seen as a completely unrelated phenomenon). In Maxwell's theory, the field is its own physical entity, carrying momenta and energy across space, and action-at-a-distance is only the apparent effect of local interactions of charges with their surrounding field.


...
Wikipedia

...