*** Welcome to piglix ***

Squaric acid

Squaric acid
Structural formula (carbon atoms omitted)
Ball-and-stick-model
Names
IUPAC name
3,4-Dihydroxycyclobut-3-ene-1,2-dione
Other names
Quadratic acid
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.018.875
PubChem CID
Properties
C4H2O4
Molar mass 114.06 g/mol
Appearance Gray powder
Melting point > 300 °C (572 °F; 573 K)
Acidity (pKa) 1.5, 3.4
Hazards
R-phrases (outdated) R36/37/38 R43
S-phrases (outdated) S26 S36
Flash point 190 °C (374 °F; 463 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY  (what is YesYN ?)
Infobox references

Squaric acid, also called quadratic acid, because its four carbon atoms approximately form a square, is an organic compound with chemical formula C4H2O4.

The conjugate base of squaric acid is the hydrogensquarate anion C4HO4; and the conjugate base of the hydrogensquarate anion is the divalent squarate anion C4O42−. This is one of the oxocarbon anions, which consist only of carbon and oxygen.

Squaric acid is a reagent for chemical synthesis, used for instance to make photosensitive squaraine dyes and inhibitors of protein tyrosine phosphatases.

Squaric acid is a white crystalline powder with a thermal decomposition point of 245 °C at ambient pressure. The onset of thermal decomposition depends on the different thermodynamic conditions such as heating rates.

The structure of squaric acid is not a perfect square, as the carbon–carbon bond lengths are not quite equal. The high acidity with pKa = 1.5 for the first proton and pKa = 3.4 for the second is attributable to resonance stabilization of the anion. Because the negative charges are equally distributed between each oxygen atom, the dianion of squaric acid is completely symmetrical (unlike squaric acid itself) with all C-C and C-O bond lengths identical.

Another, quantum mechanical, way of describing the dianion is to assume that the π electrons of the two double-bonded oxygen atoms are shifted to the latter, so that all four oxygens become single-bonded -O groups and a double positive electric charge is left in the ring of carbon atoms. In this way the ring fits Hückel's rule for aromaticity (2 π-electrons = 4n + 2 with n = 0). The total symmetry of the dianion is a consequence of charge distribution and aromaticity.


...
Wikipedia

...