*** Welcome to piglix ***

Stability (aircraft)


Flight dynamics is the study of the performance, stability, and control of vehicles flying through the air or in outer space. It is concerned with how forces acting on the vehicle influence its speed and attitude with respect to time.

In fixed-wing aircraft, the changing orientation of the vehicle with respect to the local air flow is represented by two critical parameters, angle of attack ("alpha") and angle of sideslip ("beta"). These angles describe the vector direction of airspeed, important because they are the principal source of modulations in the aerodynamic forces and moments applied to the aircraft.

Spacecraft flight dynamics involve three forces: propulsive (rocket engine), gravitational, and lift and drag (when traveling through the earth's or any other atmosphere). Because aerodynamic forces involved with spacecraft flight are very small, this leaves gravity as the dominant force.

Aircraft and spacecraft share a critical interest in their orientation with respect to the earth horizon and heading, and this is represented by another set of angles, "yaw", "pitch", and "roll", which angles match their colloquial meaning, but also have formal definition as an Euler sequence. These angles are the product of the rotational equations of motion, where orientation responds to torque, just as the velocity of a vehicle responds to forces. For all flight vehicles, these two sets of dynamics, rotational and translational, operate simultaneously and in a coupled fashion to evolve the vehicle's state (orientation and velocity) trajectory.

Flight dynamics is the science of air-vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of mass, known as roll, pitch and yaw (quite different from their use as Tait-Bryan angles).

Aircraft engineers develop control systems for a vehicle's orientation (attitude) about its center of mass. The control systems include actuators, which exert forces in various directions, and generate rotational forces or moments about the center of gravity of the aircraft, and thus rotate the aircraft in pitch, roll, or yaw. For example, a pitching moment is a vertical force applied at a distance forward or aft from the center of gravity of the aircraft, causing the aircraft to pitch up or down.


...
Wikipedia

...