Submarine eruptions are those volcano eruptions which take place beneath the surface of water. These occur at constructive margins, subduction zones and within tectonic plates due to hotspots. This eruption style is far more prevalent than subaerial activity. For example, it is believed that 70 to 80% of the Earth’s magma output takes place at mid-ocean ridges.
Submarine eruptions are less studied than subaerial volcanoes due to their inaccessibility. Developments in technology mean that submarine volcanoes can now be studied in greater detail. Despite this progress, understanding is still limited. Mid ocean ridges for example are the most active volcanic systems on Earth but roughly only 5% of their length has been studied in detail.
Initial knowledge of these eruptions came from volcanic rocks being recovered from the ocean floor when repairs were made to the Transatlantic telegraph cable in the 1800s. More recently a variety of techniques have been used to study these eruptions with significant developments being made since 1990. These include the use of remote controlled submersibles which can conduct surveys of the ocean floor. The use of hydrophone networks allows volcanic eruptions to be detected. Submersibles can be sent out in response to this to record the result of the eruption. Other tools have included seismic signals, acoustic waves and high resolution UAV multibeam mapping.
Increasingly, eruptions at greater depths can be observed. For example, an explosive eruption at West Mata in Lau Basin at a depth of 1200 m was studied using submersibles.
There is much variation in the style of submarine eruptions. This changes with a number of variables including magma viscosity, water depth, effusion rate and volatile content. Many studies highlight the effects of pressure which increases with depth. It is believed that increased pressure restricts the release of volatile gases, resulting in effusive eruptions. This is not to say that explosive eruptions don’t occur at depth, just that a higher volatile content is required. It has been estimated that at 500 m explosive activity associated with basalts is suppressed, while depths greater than 2300 m would be sufficient to prevent the majority of explosive activity from rhyolite lava.