*** Welcome to piglix ***

Supply chain optimization


Supply chain optimization is the application of processes and tools to ensure the optimal operation of a manufacturing and distribution supply chain. This includes the optimal placement of inventory within the supply chain, minimizing operating costs (including manufacturing costs, transportation costs, and distribution costs). This often involves the application of mathematical modelling techniques using computer software.

Typically, supply chain managers are trying to maximize the profitable operation of their manufacturing and distribution supply chain. This could include measures like maximizing gross margin return on inventory invested (GMROII) (balancing the cost of inventory at all points in the supply chain with availability to the customer), minimizing total operating expenses (transportation, inventory and manufacturing), or maximizing gross profit of products distributed through the supply chain. Supply chain optimization addresses the general supply chain problem of delivering products to customers at the lowest total cost and highest profit. This includes trading off the costs of inventory, transportation, distributing and manufacturing. In addition, optimizing storage and transportation costs by means of product / package size is one of the easiest and most cost effective initial implementations available to save money in product distribution.

Supply chain optimization has applications in all industries manufacturing and/or distributing goods, including retail, industrial products, and consumer packaged goods (CPG).

The classic supply chain approach has been to try to forecast future inventory demand as accurately as possible, by applying statistical trending and "best fit" techniques based on historic demand and predicted future events. The advantage of this approach is that it can be applied to data aggregated at a fairly high level (e.g. category of merchandise, weekly, by group of customers), requiring modest database sizes and small amounts of manipulation. Unpredictability in demand is then managed by setting levels, so that for example a distributor might hold two weeks of supply of an article with steady demand but twice that amount for an article where the demand is more erratic. Universally accepted statistical methods such as Standard Deviation and Mean Absolute Deviation are often used for calculating safety stock levels.


...
Wikipedia

...