A synthetic vision system (SVS) is a computer-mediated reality system for aerial vehicles, that uses 3D to provide pilots with clear and intuitive means of understanding their flying environment.
Synthetic vision was developed by NASA and the U.S. Air Force in the late 1970s and 1980s in support of advanced cockpit research, and in 1990s as part of the Aviation Safety Program. Development of the High Speed Transport (HST) fueled NASA research in the 1980s and 1990s. In the early 1980s, the USAF recognized the need to improve cockpit situation awareness to support piloting ever more complex aircraft, and pursued SVS (sometimes called pictorial format avionics) as an integrating technology for both manned and remotely piloted systems. NASA initiated industry involvement in early 2000 with major avionics manufacturers. Researchers like E. Theunissen at Delft University of Technology in the Netherlands contributed greatly to the development of SVS technology.
Synthetic vision provides situational awareness to the operators by using terrain, obstacle, geo-political, hydrological and other databases. A typical SVS application uses a set of databases stored on board the aircraft, an image generator computer, and a display. Navigation solution is obtained through the use of GPS and inertial reference systems.
Highway In The Sky (HITS), or Path-In-The-Sky, is often used to depict the projected path of the aircraft in perspective view. Pilots acquire instantaneous understanding of the current as well as the future state of the aircraft with respect to the terrain, towers, buildings and other environment features.
NASA also used synthetic vision for remotely piloted vehicles (RPVs), such as the High Maneuvability Aerial Testbed or HiMAT (see Sarrafian, 1984). According to the report by NASA, the aircraft was flown by a pilot in a remote cockpit, and control signals up-linked from the flight controls in the remote cockpit on the ground to the aircraft, and aircraft telemetry downlinked to the remote cockpit displays (see photo). The remote cockpit could be configured with either nose camera video or with a 3D synthetic vision display. SV was also used for simulations of the HiMAT. Sarrafian reports that the test pilots found the visual display to be comparable to output of camera on board the RPV.