Temperature chaining can mean temperature, thermal or energy chaining or cascading.
Temperature chaining has been introduced as a new concept at Datacentre Transformation in Manchester by the company Asperitas as part of a vision on a Datacentre of the Future. It is a method of transforming electrical consumption in datacentres into usable heat. The concept is based on creating high temperature differences in a water based cooling circuit in a datacentre. The premise is that every system in a datacentre can be equipped with a shared water infrastructure which is divided into multiple stages with different temperatures. The different temperatures are achieved by setting up different liquid cooling technologies with different temperature tolerances in a serial cooling setup as opposed to a single parallel circuit. This creates high temperature differences with a low water volume. This results in a datacentre environment which is capable of supplying constant temperature water to a re-user, thus transforming the facility from an electrical energy consumer into a thermal energy producer.
Temperature or energy chaining is applied in heating systems where hydraulic designs allow for return loops and serial heaters.
The temperature chaining principle is also used in refrigeration systems which adopt cascading circuits.
The Amsterdam Economic Board has presented the 4th generation of district heating networks which will adopt thermal cascading to increase flexibility and to make the district networks future proof.
Within datacentres, the traditional approach towards the critical IT load is cooling. Temperature chaining works on the basic premise that the IT is a heating source. To harvest this heat, liquid cooling is used, which allows the application of hydraulic heating designs to the datacentre.
Introducing water into the datacentre whitespace is most beneficial within a purpose-built set-up. This means that the focus for the design of the datacentre must be on absorbing all the thermal energy with water. This calls for a hybrid environment in which different liquid based technologies are co-existing to allow for the full range of datacentre and platform services, regardless of the type of datacentre.
The adoption of liquid cooled IT in datacentres allows for more effective utilisation or reduction of the datacentre footprint. This means that an existing facility can be better utilised to allow for more IT.
The higher heat capacity of liquids allows for more dense IT environments and higher IT capacity. With most liquid technologies, the IT itself becomes more efficient. This is caused by the reduced or eliminated dependence on air handling within the IT chassis. Individual components are cooled more effectively and can therefore be used with higher amounts of energy and closer to each other. When liquid penetrates the IT space, internal fans are reduced or completely eliminated which saves energy. This also reduces the emergency power requirements within the facility.