Mathematical and theoretical biology is an interdisciplinary scientific research field with a range of applications. The field is sometimes called mathematical biology or biomathematics to stress the mathematical side, or theoretical biology to stress the biological side. Theoretical biology focuses more on the development of theoretical principles for biology while mathematical biology focuses on the use of mathematical tools to study biological systems, even though the two terms are sometimes interchanged. Mathematical biology aims at the mathematical representation, treatment and modeling of biological processes, using techniques and tools of applied mathematics. It has both theoretical and practical applications in biological, biomedical and biotechnology research. Describing systems in a quantitative manner means their behavior can be better simulated, and hence properties can be predicted that might not be evident to the experimenter. This requires precise mathematical models.
Mathematical biology employs many components of mathematics, and has contributed to the development of new techniques.
Mathematics has been applied to biology since the 19th century.
Fritz Müller described the evolutionary benefits of what is now called Müllerian mimicry in 1879, in an account notable for being the first use of a mathematical argument in evolutionary ecology to show how powerful the effect of natural selection would be, unless one includes Malthus's discussion of the effects of population growth that influenced Charles Darwin: Malthus argued that growth would be "geometric" while resources (the environment's carrying capacity) could only grow arithmetically.
One founding text is considered to be On Growth and Form (1917) by D'Arcy Thompson, and other early pioneers include Ronald Fisher, Hans Leo Przibram, Nicolas Rashevsky and Vito Volterra.