Thiolate-protected gold clusters are a type of ligand-protected metal cluster, synthesized from gold ions and thin layer compounds that play a special role in cluster physics because of their unique stability and electronic properties. They are considered to be stable compounds.
These clusters can range in size up to hundreds of gold atoms, above which they are classified as passivated gold nanoparticles.
The wet chemical synthesis of thiolate-protected gold clusters is achieved by the reduction of gold(III) salt solutions, using a mild reducing agent in the presence of thiol compounds. This method starts with gold ions and synthesizes larger particles from them, therefore this type of synthesis can be regarded as a "bottom-up approach" in nanotechnology to the synthesis of nanoparticles.
The reduction process depends on the equilibrium between different oxidation states of the gold and the oxidized or reduced forms of the reducing agent, or thiols. Gold(I)-thiolate polymers have been identified as important in the initial steps of the reaction. Several synthesis recipes exist that are similar to the Brust synthesis of colloidal gold, however the mechanism is not yet fully understood. The synthesis produces a mixture of dissolved, thiolate-protected gold clusters of different sizes. These particles can then be separated by gel electrophoresis (PAGE). If the synthesis is performed in a kinetically controlled manner, particularly stable representatives can be obtained with particles of uniform size (monodispersely), avoiding further separation steps.
Rather than starting from "naked" gold ions in solution, template reactions can be used for directed synthesis of clusters. The high affinity of the gold ions to electronegative and (partially) charged atoms of functional groups yields potential seeds for cluster formation. The interface between the metal and the template can act as a stabilizer and steer the final size of the cluster. Some potential templates are dendrimers, oligonucleotides, proteins, polyelectrolytes and polymers.