*** Welcome to piglix ***

Time-Sensitive Networking


Time-Sensitive Networking (TSN) is a set of standards under development by the Time-Sensitive Networking task group of the IEEE 802.1 working group. The TSN task group was formed at November 2012 by renaming the existing Audio / Video Bridging Task Group and continuing its work. The name changed as a result of extension of the working area of the standardization group. The standards define mechanisms for the time-sensitive transmission of data over Ethernet networks.

The majority of projects define extensions to the IEEE 802.1Q – Virtual LANs. These extensions in particular address the transmission of very low transmission latency and high availability. Possible applications include converged networks with real time Audio/Video Streaming and real-time control streams which are used in automotive or industrial control facilities.

Work is also currently being carried out in AVnu Alliance's specially created Industrial group to define Compliance & Interoperability requirements for TSN networked elements. For finding out more information about this initiative and about TSN standards in general, interested parties are invited to join the Industrial Advisory Council by contacting the AVnu administration.

The different TSN standards documents that are specified by IEEE 802.1 can be grouped into three basic key component categories that are required for a complete real-time communication solution. Each and every standard specification can be used on its own and is mostly self-sufficient. However, only when used together in a concerted way, TSN as a communication system can achieve its full potential. The three basic components are:

The name "Time-sensitive networking" is already quite descriptive in this regard: In contrast to standard Ethernet according to IEEE 802.3 and Ethernet bridging according to IEEE 802.1Q, time plays an important role in TSN networks. For real-time communication with hard, non-negotiable time boundaries for end-to-end transmission latencies, all devices in this network need to have a common time reference and therefore, need to synchronize their clocks among each other. This is not only true for the end devices of a communication stream, such as an industrial controller and a manufacturing robot, but also true for network components, such as Ethernet switches. Only through synchronized clocks, it is possible for all network devices to operate in unison and execute the required operation at exactly the required point in time.


...
Wikipedia

...