*** Welcome to piglix ***

Transcription activator-like effector nuclease


Transcription activator-like effector nucleases (TALEN) are restriction enzymes that can be engineered to cut specific sequences of DNA. They are made by fusing a TAL effector DNA-binding domain to a DNA cleavage domain (a nuclease which cuts DNA strands). Transcription activator-like effectors (TALEs) can be engineered to bind to practically any desired DNA sequence, so when combined with a nuclease, DNA can be cut at specific locations. The restriction enzymes can be introduced into cells, for use in gene editing or for genome editing in situ, a technique known as genome editing with engineered nucleases. Alongside zinc finger nucleases and CRISPR/Cas9, TALEN is a prominent tool in the field of genome editing.

TAL effectors are proteins that are secreted by Xanthomonas bacteria via their type III secretion system when they infect plants. The DNA binding domain contains a repeated highly conserved 33–34 amino acid sequence with divergent 12th and 13th amino acids. These two positions, referred to as the Repeat Variable Diresidue (RVD), are highly variable and show a strong correlation with specific nucleotide recognition. This straightforward relationship between amino acid sequence and DNA recognition has allowed for the engineering of specific DNA-binding domains by selecting a combination of repeat segments containing the appropriate RVDs. Notably, slight changes in the RVD and the incorporation of "nonconventional" RVD sequences can improve targeting specificity.

The non-specific DNA cleavage domain from the end of the FokI endonuclease can be used to construct hybrid nucleases that are active in a yeast assay. These reagents are also active in plant cells and in animal cells. Initial TALEN studies used the wild-type FokI cleavage domain, but some subsequent TALEN studies also used FokI cleavage domain variants with mutations designed to improve cleavage specificity and cleavage activity. The FokI domain functions as a dimer, requiring two constructs with unique DNA binding domains for sites in the target genome with proper orientation and spacing. Both the number of amino acid residues between the TALE DNA binding domain and the FokI cleavage domain and the number of bases between the two individual TALEN binding sites appear to be important parameters for achieving high levels of activity.


...
Wikipedia

...