In mathematics, a stochastic matrix (also termed probability matrix, transition matrix,substitution matrix, or Markov matrix) is a square matrix used to describe the transitions of a Markov chain. Each of its entries is a nonnegative real number representing a probability. It has found use in probability theory, statistics, mathematical finance and linear algebra, as well as computer science and population genetics. There are several different definitions and types of stochastic matrices:
In the same vein, one may define stochastic vector (also called probability vector) as a vector whose elements are nonnegative real numbers which sum to 1. Thus, each row of a right stochastic matrix (or column of a left stochastic matrix) is a stochastic vector.
A common convention in English language mathematics literature is to use row vectors of probabilities and right stochastic matrices rather than column vectors of probabilities and left stochastic matrices; this article follows that convention.
A stochastic matrix describes a Markov chain over a finite state space S with cardinality .