Tunnel magnetoresistance (TMR) is a magnetoresistive effect that occurs in a magnetic tunnel junction (MTJ), which is a component consisting of two ferromagnets separated by a thin insulator. If the insulating layer is thin enough (typically a few nanometers), electrons can tunnel from one ferromagnet into the other. Since this process is forbidden in classical physics, the tunnel magnetoresistance is a strictly quantum mechanical phenomenon.
Magnetic tunnel junctions are manufactured in thin film technology. On an industrial scale the film deposition is done by magnetron sputter deposition; on a laboratory scale molecular beam epitaxy, pulsed laser deposition and electron beam physical vapor deposition are also utilized. The junctions are prepared by photolithography.
The direction of the two magnetizations of the ferromagnetic films can be switched individually by an external magnetic field. If the magnetizations are in a parallel orientation it is more likely that electrons will tunnel through the insulating film than if they are in the oppositional (antiparallel) orientation. Consequently, such a junction can be switched between two states of electrical resistance, one with low and one with very high resistance.
The effect was originally discovered in 1975 by M. Jullière (University of Rennes, France) in Fe/Ge-O/Co-junctions at 4.2 K. The relative change of resistance was around 14%, and did not attract much attention. In 1991 Terunobu Miyazaki (Tohoku University, Japan) found an effect of 2.7% at room temperature. Later, in 1994, Miyazaki found 18% in junctions of iron separated by an amorphous aluminum oxide insulator and Jagadeesh Moodera found 11.8% in junctions with electrodes of CoFe and Co. The highest effects observed to date with aluminum oxide insulators are around 70% at room temperature.