*** Welcome to piglix ***

Twin primes


A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, the twin prime pair (41, 43). In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term twin prime is used for a pair of twin primes; an alternative name for this is prime twin or prime pair.

Twin primes become increasingly rare as one examines larger ranges, in keeping with the general tendency of gaps between adjacent primes to become larger as the numbers themselves get larger. However, it is a longstanding conjecture that there are infinitely many twin primes. Work of Yitang Zhang in 2013, as well as work by James Maynard, Terence Tao and others, has made substantial progress towards proving this conjecture, but at present it remains unsolved.

The question of whether there exist infinitely many twin primes has been one of the great open questions in number theory for many years. This is the content of the twin prime conjecture, which states that there are infinitely many primes p such that p + 2 is also prime. In 1849, de Polignac made the more general conjecture that for every natural number k, there are infinitely many primes p such that p + 2k is also prime. The case k = 1 is the twin prime conjecture.

A stronger form of the twin prime conjecture, the Hardy–Littlewood conjecture (see below), postulates a distribution law for twin primes akin to the prime number theorem.

Usually the pair (2, 3) is not considered to be a pair of twin primes. Since 2 is the only even prime, this pair is the only pair of prime numbers that differ by one; thus twin primes are as closely spaced as possible for any other two primes.

The first few twin prime pairs are:

Every twin prime pair except (3, 5) is of the form (6n − 1, 6n + 1) for some natural number n; that is, the number between the two primes is a multiple of 6.


...
Wikipedia

...